If it's not what You are looking for type in the equation solver your own equation and let us solve it.
63n^2-112=0
a = 63; b = 0; c = -112;
Δ = b2-4ac
Δ = 02-4·63·(-112)
Δ = 28224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28224}=168$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-168}{2*63}=\frac{-168}{126} =-1+1/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+168}{2*63}=\frac{168}{126} =1+1/3 $
| X^=11x-28 | | 20t(t+2)=17t-6 | | 3(3m+2)=-9 | | -3t-6=-6+17t | | x+5+3x-10=10 | | 15(t+2)=2t-5 | | 5y=-7+6y | | 2a=7+3 | | 2x^2-1x=-6 | | 5x-3(2x-13)=34 | | -17-6z=17-4z | | 7z-7-2z-2=0 | | 2x-50+x+30=180 | | 7k=5k+16 | | 7a-6(a+8)=a-8(2a-6) | | 50+x+10+x=180 | | 5.8x+12=17.8x-12 | | 6x-(x-1)=36 | | -4j-13=-10j+17 | | 5x+40+12x-40=180 | | 3x+10+2x-20=180 | | X=x(16-2x)(10-2x) | | 8x-(x+1)=76 | | 6a+3=13 | | 2a^2-13=-5 | | 30+3x=x | | 5/9=95/x | | 2x+8-x=54 | | 2m^2-3m-44=0 | | 4 | | j−4=42 | | 8m-5=3m+20 |